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About this Book

Version 1.0 released in 2017.

When I released The Hacker’s Guide to Python in 2014, I had no idea that I
would be writing a new book so soon. Having worked on OpenStack for a few more
years, I saw how it is easy to struggle with other aspects of Python, even after being
on board for a while.

Nowadays, even if computers are super-fast, no server is fast enough to handle
millions of request per second, which is a typical workload we want to use them for.
Back in the day, when your application was slow, you just had to optimize it or up-
grade your hardware – whichever was cheaper. However, in a world where you may
already have done both, you need to be able to scale your application horizontally,
i.e., you have to make it run on multiple computers in parallel.

That is usually the start of a long journey, filled with concurrency problems and
disaster scenarios.

Developers often dismiss Python when they want to write performance enhanc-
ing, and distributed applications. They tend to consider the language to be slow and
not suited to that task. Sure, Python is not Erlang, but there’s also no need to ditch
it for Go because of everyone saying it is faster.

I would like to make you aware, dear reader, that a language is never slow.
You would not say that English or French is slow, right? The same applies for pro-
gramming languages. The only thing that can be slow is the implementation of the
language – in Python’s case, its reference implementation is CPython.

Indeed CPython can be quite sluggish, and it has its share of problems. Every



implementation of a programming language has its downside. However, I think that
the ecosystem of Python can make up for that defect.

Python and everything that evolves around it offer a large set of possibilities
to extend your application, so it can manage thousands of requests simultaneously,
compensating for its lack of distributed design or, sometimes its ”slowness”.

Moreover, if you need proof, you can ask companies such as Dropbox, PayPal
or Google as they all use Python on a large scale. Instagram has 400 million active
users every day and their whole stack is served using Python and Django.

In this book, we will discuss how one can push Python further and build ap-
plications that can scale horizontally, perform well and remain fast while being dis-
tributed. I hope it makes you more productive at Python and allows you to write
better applications that are also faster!

Most code in this book targets Python 3. Some snippetsmight work on Python 2
without much change, but there is no guarantee.
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CHAPTER 1

Scaling?

“Scalability is the capability of a system, network, or process to handle
a growing amount of work, or its potential to be enlarged to accom-
modate that growth.

— Wikipedia

”
When we talk about scaling Python, what we mean is making Python applica-

tion scalable. However, what is scalability?

According to Wikipedia, scalability is ”the capability of a system, network, or
process to handle a growing amount of work, or its potential to be enlarged to ac-
commodate that growth”. This definition makes scalability difficult to define as an
absolute since no definition applies to all applications.

This book concentrates on methods, technologies, and practice that allow one
to make applications fast and able to grow in order to handle more jobs – all of



that using the Python programming language and its major implementation, named
CPython.

We are all aware that processors are not becoming faster and faster at a rate
where a single threaded application could, one day, be fast enough to handle any size
workload. That means you need to think about using more than just one processor.
Building scalable applications implies that you distribute the workload acrossmultiple
workers using multiple processing units.

Dividing up the tasks at hand, those workers run across several processors, and
in some cases, across several computers.

That is a distributed application.

There are fundamental properties to understand about distributed systems be-
fore digging into how to build them in Python – or any other language.

We can lay out the following options when writing an application:

• Write a single-threaded application. This should be your first pick, and indeed it
implies no distribution. They are the simplest of all applications. They are easy
to understand and therefore easier to maintain. However, they are limited by the
power of using a single processor.

• Write a multi-threaded application. Most computers – even your smartphone –
are now equipped with multiple processing units. If an application can overload
an entire CPUs, it needs to spread its workload over other processors by spawning
new threads (or new processes). Multi-threading applications aremore error-prone
than single-threaded applications, but they offer fewer failure scenarios than multi-
nodes applications, as no network is involved.

• Write network distributed applications. This is your last resort when your appli-
cation needs to scale significantly, and not even one big computer with plenty of
CPUs is enough. Those are the most complicated applications to write as they use
a network. It means they should handle a lot of scenarios, such as a total or partial
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failure of a node or the network, high latency, messages being lost, and any other
terrible property related to the unreliability of networks.

The properties of distribution vary widely depending on the type you pick. Op-
erations on a single processor can be regarded as fast, with low latency while being
reliable, and ordered, whereas operations across several nodes should be considered,
slow, with high latency. They are often unreliable and unordered.

Consider each architecture choice or change carefully. As seen throughout this
book, there are various tools and methods in Python available for dealing with any
of those choices. They help to build distributed systems, and therefore scalable ap-
plications.

1.1 Across CPUs

Scaling across processors is usually done using multithreading. Multithreading is
the ability to run code in parallel using threads. Threads are usually provided by the
operating system and are contained in a single process. The operating system is
responsible to schedule their execution.

Since they run in parallel, that means they can be executed on separate pro-
cessors even if they are contained in a single process. However, if only one CPU is
available, the code is split up and run sequentially.

Therefore, when writing a multithreaded application, the code always runs con-
currently but runs in parallel only if there is more than one CPU available.

This means that multithreading looks like a good way to scale and parallelize
your application on one computer. When you want to spread the workload, you start
a new thread for each new request instead of handling them one at a time.

However, this does have several drawbacks in Python. If you have been in the
Python world for a long time, you have probably encountered the word GIL, and
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know how hated it is. The GIL is the Python global interpreter lock, a lock that must be
acquired each time CPython needs to execute byte-code. Unfortunately, this means
that if you try to scale your application by making it run multiple threads, this global
lock always limits the performance of your code, as there are many conflicting de-
mands. All your threads try to grab it as soon as they need to execute Python instruc-
tions.

The reason that the GIL is required in the first place is that it makes sure that
some basic Python objects are thread-safe. For example, the code in Example 1.1
would not be thread-safe without the global Python lock.

Example 1.1 Thread-unsafe code without the GIL

1 import threading
2

3 x = []
4

5 def append_two(l):
6 l.append(2)
7

8 threading.Thread(target=append_two, args=(x,)).start()
9

10 x.append(1)
11 print(x)

That code prints either [2, 1] or [1, 2], no matter what. While there is no
way to know which thread appends 1 or 2 before the other, there is an assumption
built into Python that each list.append operation is atomic. If it was not atomic, a
memory corruption might arise and the list could simply contain [1] or [2].

This phenomenon happens because only one thread is allowed to execute a
bytecode instruction at a time. That also means that if your threads run a lot of
bytecodes, there are many contentions to acquire the GIL, and therefore your pro-
gram cannot be faster than a single-threaded version – or it could even be slower.

The easiest to way to know if an operation is thread-safe is to know if it translates
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to a single bytecode instruction 1 or if it uses a basic type whose operations are atomic
2.

So while using threads seems like an ideal solution at first glance, most applica-
tions I have seen running using multiple threads struggle to attain 150% CPU usage
– that is to say, 1.5 cores used. With computing nodes nowadays usually not having
less than four or eight cores, it is a shame. Blame the GIL.

There is currently an effort underway (named gilectomy) to remove the GIL in
CPython. Whether this effort will pay off is still unknown, but it is exciting to follow
and see how far it will go.

However, CPython is just one – although the most common – of the available
Python implementations. Jython, for example, doesn’t have a global interpreter lock,
which means that it can run multiple threads in parallel efficiently. Unfortunately,
these projects by their very natures lag behind CPython, and so they are not useful
targets.

Multithreading involves several traps, and one of them is that all the pieces of
code running concurrently are sharing the same global environment and variables.
Reading or writing global variables should be done exclusive by using techniques
such as locking, which complicates your code; moreover, it is an infinite source of
human errors.

Gettingmulti-threaded applications right is hard. The level of complexitymeans
that it is a large source of bugs – and considering the little to be gained in general, it
is better not to waste too much effort on it.

So are we back to our initial use cases, with no real solutions on offer? Not true
– there’s another solution you can use: using multiple processes. Doing this is going
to be more efficient and easier as we will see in Chapter 2. It is also a first step before
spreading across a network.

1Details about disassembling code and bytecode instruction are provided in Section 13.4.
2The list is provided in the Python FAQ.
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1.2 Distributed Systems

“A distributed system is one in which the failure of a computer you
didn’t even know existed can render your own computer unusable.

— Lamport (1987)

”
When an application uses all the CPU power of a node, and you cannot add more
processors to your server or switch to a bigger server, you need a plan B.

The next step usually involves multiple servers, linked together via a network of
some sort. That means the application starts to be distributed: running not only on
one node but on multiple, connected, nodes. Spreading the workload over different
hosts introduces several advantages, such as:

• Horizontal scalability, the ability to add more nodes as more traffic comes in

• Fault tolerance, as if a node goes down, another one can pick up the traffic of the
dysfunctioning one

While this sounds awesome, it also introduces major drawbacks:

• As with multithreading, concurrency and parallelism come into play and compli-
cate the workflow (e.g., locking usage)

• What can fail will fail, such as a random node in the middle of an operation or a
laggy network, so tolerance for failure must be built-in
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All of this means that an application which is going the distributed route ex-
pand its complexity while potentially increasing its throughput. Making this kind of
architectural decision requires great wisdom.

Python does not offer so many tools for building a distributed system, but its
ecosystem has a few good options as seen throughout this book. For example, it can
be pretty easy to distribute jobs across several nodes as covered in Chapter 5. Bigger
problems such as coordination and synchronization with sibling nodes also have a
few solutions, as discussed in Chapter 7 and Chapter 8.

Finally, a great approach to writing distributed systems is to make them purely
functional, i.e., without any shared state. That means such applications should not
have even a single shared, global variable, across all of its distributed processes. State-
less systems are the easiest ones to distribute and scale, and therefore systems should
be designed as such when possible. Chapter 4 talks about functional programming
and the mindset behind writing such programs.

1.3 Service-Oriented Architecture

If you’ve never heard of it, service-oriented architecture is an architectural style where
a software design is made up of several independent components communicating
over a network. Each service is a discrete unit of functionality that can work au-
tonomously. That means that the problem should be divided up into interacting
logical pieces. If we refer back to the different application styles defined in Chap-
ter 1, SOA refers to network distributed applications.

This kind of architecture is not a perfect or magical solution. It has many draw-
backs, but it also has many advantages that make it valuable… and so popular these
days for building distributed applications.

The service-oriented architecture is not a first-class citizen in Python, though it
makes it easy to use and implement – the language being generic and the ecosystem
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rich enough.

Services built for this kind of architecture should follow a few principles 3 among
them being stateless. That means services must either modify and return the re-
quested value (or an error) while separating their functioning from the state of the
data. This is an essential property, as it makes it easier to scale the services horizon-
tally.

Statelessness is a property that is also shared with the functional programming
paradigm, as discussed in Chapter 4. Both of these are relevant topics and principles
to know about when designing scalable applications.

How to split your application into different services might deserve a book on its
own, but there are mainly two categories:

• Object-oriented approach: each noun is a service, e.g., catalog service, phone ser-
vice, queue service, etc. Such service types are a good way to represent data types.

• Functional approach: each verb is a service, e.g., search service, authentication
service, crawl service, etc. Such service types are a good way to represent transfor-
mations.

Having too many services has a cost, as they come with some overheard. Think
of all of the costs associated, such as maintenance and deployment, and not only
development time. Splitting an application should always be a well-thought out de-
cision.

If you know that some services need to scale independently, you should probably
split them. However, if they are latency sensitive and should work together very
closely, involving a lot of communication, that might be where the line is drawn.

Software production is both a technical and social artifact: there might be some
services that come naturally to mind due to the social organization of your project.

3Wikipedia offers a great list of those principles.
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For example, some teams might be responsible for the user database, so that might be
their job to create and maintain an independent user service that other components
can use to get information and authenticate it. This is also important to take into
consideration when choosing where to set the boundaries of your different services.

Once this is all set 4, the technical aspect of the implementation comes to mind.
Nowadays, the most common type of services that are encountered are Web services,
base on the well-known and ubiquitous HTTP protocol. This is what will be largely
discussed in Chapter 9.

4Of course no architecture is written in stone, and everything can evolve, likewise social groups
change and services might come and go.

22 / 298



CHAPTER 2

CPU Scaling

As CPUs are not getting infinitely faster, using multiple CPUs is the best path
towards scalability. That means introducing concurrency and parallelism into your
program, and that is not an easy task. However, once correctly done, it really does
increase the total throughput.

Python offers two options to spread your workload across multiple local CPUs:
threads or processes. They both come with challenges; some are not specifically tied
to Python, while some are only relevant to its main implementation, i.e., CPython.

2.1 Using Threads

Threads in Python are a good way to run a function concurrently other functions. If
your system does not support multiple processors, the threads will be executed one
after another as scheduled by the operating system. However, if multiple CPUs are
available, threads could be scheduled on multiple processing units, once again as
determined by the operating system.

By default, there is only one thread – the main thread – and it is the thread
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that runs your Python application. To start another thread, Python provides thethreading module.

Example 2.1 Starting a new thread

1 import threading
2

3

4 def print_something(something):
5 print(something)
6

7

8 t = threading.Thread(target=print_something, args=(”hello”,))
9 t.start()

10 print(”thread started”)
11 t.join()

If you run the program in Example 2.1 multiple times, you will notice that the
output might be different each time. On my laptop, doing this gives the following:

1 $ python examples/chapter2-cpu-scaling/threading-start.py
2 hellothread started
3 $ python examples/chapter2-cpu-scaling/threading-start.py
4 hello
5 thread started
6 $ python examples/chapter2-cpu-scaling/threading-start.py
7 hello
8 thread started

If you specifically expected any one of the outputs each time, then you forgot
that there is no guarantee regarding the order of execution for the threads.

Once started, the threads join: the main thread waits for the second thread to
complete by calling its joinmethod. Using join is handy in terms of not leaving any
threads behind.

If you do not join all your threads and wait for them to finish, it is possible that
the main thread finishes and exits before the other threads. If this happens, your
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program will appear to be blocked and will not respond to even a simple KeyboardInterrupt signal.
To avoid this, and because your program might not be in a position to wait for

the threads, you can configure threads as daemons. When a thread is a daemon, it is
considered as a background thread by Python and is terminated as soon as the main
thread exists.

Example 2.2 Starting a new thread in daemon mode

1 import threading
2

3

4 def print_something(something):
5 print(something)
6

7

8 t = threading.Thread(target=print_something, args=(”hello”,))
9 t.daemon = True

10 t.start()
11 print(”thread started”)

In Example 2.2 , there is no longer a need to use the join method since the
thread is set to be a daemon.

The program below is a simple example, which sums one million random inte-
gers eight times, spread across eight threads at the same time.

Example 2.3 Workers using multithreading

1 import random
2 import threading
3

4 results = []
5

6

7 def compute():
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8 results.append(sum(
9 [random.randint(1, 100) for i in range(1000000)]))

10

11

12 workers = [threading.Thread(target=compute) for x in range(8)]
13 for worker in workers:
14 worker.start()
15 for worker in workers:
16 worker.join()
17 print(”Results: %s” % results)

Running Example 2.3 program returns the following:

1 $ time python multithreading-worker.py
2 Results: [50505811, 50471217, 50531481, 50460206, 50462903, 50533718, ←֓50500182, 50480848]
3 python examples/multithreading-worker.py 19.84s user 6.32s system 116% ←֓cpu 22.501 total

The program ran on an idle quad cores CPU, which means that Python could
have used up to 400%CPUpower. However, it was unable to do that, even with eight
threads running in parallel – it stuck at 116%, which is just 29% of the hardware’s
capabilities.

The graph in Figure 2.1 illustrates that bottleneck: to access all of the system’s
CPU, you need to go through CPython’s GIL.
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Figure 2.1: Using threads with CPython

Again, as discussed in Section 1.1, the GIL limits the performance of CPython
when executing multiple threads. Threads are therefore useful when doing parallel
computing or input/output on slow networks or files: those tasks can run in parallel
without blocking the main thread.

To achieve a greater throughput using multiple CPUs, using processes is an
interesting alternative discussed in Section 2.2.

2.2 Using Processes

Since multithreading is not a perfect scalability solution because of the GIL, using
processes instead of threads is a good alternative. Python obviously exposes the os.
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2.2. USING PROCESSESfork system call to create new processes. However, this approach is a little bit too
low-level to be interesting in most cases.

Instead, the multiprocessing package is a good higher-level alternative. It
provides an interface that starts new processes, whatever your operating systemmight
be.

We can rewrite Example 2.3 using processes thanks to the multiprocessing library,
as shown in Example 2.4.

Example 2.4 multiprocessing.Process usage
1 import random
2 import multiprocessing
3

4

5 def compute(results):
6 results.append(sum(
7 [random.randint(1, 100) for i in range(1000000)]))
8

9

10 with multiprocessing.Manager() as manager:
11 results = manager.list()
12 workers = [multiprocessing.Process(target=compute, args=(results,) ←֓)
13 for x in range(8)]
14 for worker in workers:
15 worker.start()
16 for worker in workers:
17 worker.join()
18 print(”Results: %s” % results)

The example is a bit trickier to write as there is no data shared available between
different processes. Since each process is a new independent Python, the data is
copied and each process has its own independent global state. The multiprocessing.Manager class provides a way to create shared data structures that are safe for
concurrent accesses.
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Running this program gives the following result:

Example 2.5 Result of time python multiprocessing-workers.py
1 $ time python multiprocessing-workers.py
2 Results: [50505465, 50524237, 50492168, 50482321, 50503634, 50543646, ←֓50533775, 50521610]
3 python examples/multiprocessing-workers.py 32.00s user 0.50s system ←֓332% cpu 9.764 total

Compared to Example 2.3, usingmultiple processes reduces the execution times
by 60%. This time, the processes have been able to consume up to 332% of the CPU
power, which is more than 80% of the computer’s CPU capacity, or close to three
times more than multithreading.

The graph in Figure 2.2 tries to lay out the differences in terms of how schedul-
ing processes work and why it is more efficient than using threads, as shown previ-
ously.

Figure 2.2: Using processes with CPython

Each time some work can be parallelized for a certain amount of time, it’s
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much better to rely on multiprocessing and to fork jobs, thiu spreading the workload
among several CPU cores, rather than using the threading module.

The multiprocessing library also provides a pool mechanism that is useful to
rewrite the code from Example 2.4 in a more functional manner; an example is pro-
vided as Example 2.6.

Example 2.6 Worker using multiprocessing

1 import multiprocessing
2 import random
3

4

5 def compute(n):
6 return sum(
7 [random.randint(1, 100) for i in range(1000000)])
8

9

10 # Start 8 workers
11 pool = multiprocessing.Pool(processes=8)
12 print(”Results: %s” % pool.map(compute, range(8)))

Using multiprocessing.Pool, there is no need to manage the processes ”man-
ually”. The pool starts processes on-demand and takes care of reaping them when
done. They are also reusable, which avoids calling the fork syscall too often – which
is quite costly. It is a convenient design pattern that is also leveraged in futures, as
discussed in Section 2.3.

2.3 Using Futures

Python 3.2 introduced the concurrent.futuresmodule, which provides an easy way
to schedule asynchronous tasks. The module is also available in Python 2 as it has
been back-ported – it can easily be installed it by running pip install futures.
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The concurrent.futures module is pretty straightforward to use. First, one
needs to pick an executor. An executor is responsible for scheduling and running
asynchronous tasks. It can be seen as a type of engine for execution. The module
currently provides two kinds of executors: concurrent.futures.ThreadPoolExecutor
and concurrent.futures.ProcessPoolExecutor. As one might guess, the first one is
based on threads and the second one on processes.

As outlined in Section 1.1, the process based executor is going to be much more
efficient for long-running tasks that benefit from having an entire CPU available. The
threading executor suffers from the same limitation of the threading module, which
was covered earlier.

So what is interesting with the concurrent.futures module is that it provides
an easier to use abstraction layer on top of the threading and multiprocessingmod-
ules. It allows one to run and parallelize code in a straightforward way, providing an
abstract data structure called a concurrent.futures.Future object.

Each time a program schedules some tasks to execute in threads or processes, theconcurrent.futures module returns a Future object for each of the task scheduled.
This Future object owns the promise of the work to be completed. Once that work is
achieved, the result is available in that Future object – so in the end, it does represent
the future and the promise of a task to be performed. That is why it is called Future
in Python, and sometimes promise in other languages.

Example 2.7 Worker using concurrent.futures.ThreadPoolExecutor
1 from concurrent import futures
2 import random
3

4

5 def compute():
6 return sum(
7 [random.randint(1, 100) for i in range(1000000)])
8

9
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10 with futures.ThreadPoolExecutor(max_workers=8) as executor:
11 futures = [executor.submit(compute) for _ in range(8)]
12

13 results = [f.result() for f in futures]
14

15 print(”Results: %s” % results)
Compared to the threading based example script, you might notice that this

one is more functional. I changed the compute function to return the result rather
than changing a shared object. It is then easy to manipulate and transfer the Future
object and collect the result as desired when it is needed. Functional programming
is a perfect paradigm to embrace when trying to spread workload across distributed
workers – it is covered more in Chapter 4.

The code just schedules the jobs to be fulfilled and collects the results from theFuture objects using the result method – which also supports a timeout parame-
ter in case the program cannot hang for too long. Future objects offer some more
interesting methods:

• done(): This returns True if the call was successfully canceled or terminated cor-
rectly.

• add_done_callback(fn): This attaches a callable to the future which is called with
the future as its only argument; it is done as soon as the future is canceled or
terminates correctly.

Example 2.8 Time and output of futures-threads-worker

1 $ time python futures-threads-worker.py
2 Results: [50532744, 50524277, 50507195, 50501211, 50537292, 50490570, ←֓50484569, 50515144]
3 python futures-threads-worker.py 14.50s user 6.91s system 126% cpu ←֓16.893 total
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The execution time is in the same low range as the example using the threading
technique: indeed, the underlying engine is based on the threading module.

Keep in mind that concurrent.futures allows you to easily switch from threads
to processes by using the concurrent.futures.ProcessPoolExecutor:
Example 2.9 Worker using concurrent.futures.ProcessPoolExecutor

1 from concurrent import futures
2 import random
3

4

5 def compute():
6 return sum(
7 [random.randint(1, 100) for i in range(1000000)])
8

9

10 with futures.ProcessPoolExecutor() as executor:
11 futures = [executor.submit(compute) for _ in range(8)]
12

13 results = [f.result() for f in futures]
14

15 print(”Results: %s” % results)
There is no need to set the number of max_workers: as by default concurrent.futures calls the multiprocessing.cpu_count function to set the number of workers

to use, which is equal to the number of CPUs the system can use – as is shown in
Example 2.10

Example 2.10 Extract of concurrent.futures.process
1 class ProcessPoolExecutor(_base.Executor):
2 def __init__(self, max_workers=None):
3 # [...]
4 if max_workers is None:
5 self._max_workers = multiprocessing.cpu_count()
6 else:
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7 self._max_workers = max_workers
As expected, using processes is much faster than the threading based executor:

Example 2.11 Time and output of futures-threads-worker
1 $ time python futures-processes-worker.py
2 Results: [50485099, 50461662, 50553224, 50458097, 50520276, 50510314, ←֓50510035, 50525335]
3 python futures-processes-worker.py 19.48s user 0.30s system 330% cpu ←֓5.991 total

Warning
One important thing to notice with both of the pool based execu-
tors is the way they manage the processes and threads they spawn.
There are several policies that the authors could have implemented.
The one selected is that for each job submitted, a new worker is
spawned to do the work, and the work is put in a queue shared
across all the existing workers. That means that if the caller setsmax_workers to 20, then 20 workers will exist as soon as 20 jobs are
submitted. None of those processes will ever be destroyed. This
is different than, for example, Apache httpd workers that exit after
being idle for a while. You can see that this is marked as a TODO
in Python source code as shown in Example 2.12

Example 2.12 Extract of concurrent.futures.thread
1 class ThreadPoolExecutor(_base.Executor):
2 def submit(self, fn, *args, **kwargs):
3 [...]
4 self._adjust_thread_count()
5
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6 def _adjust_thread_count(self):
7 [...]
8 # TODO(bquinlan): Should avoid creating new threads if there ←֓are more
9 # idle threads than items in the work queue.

10 if len(self._threads) < self._max_workers:
11 t = threading.Thread(target=_worker,
12 args=(weakref.ref(self, weakref_cb),
13 self._work_queue))
14 t.daemon = True
15 t.start()
16 self._threads.add(t)
17 _threads_queues[t] = self._work_queue
2.4 Advanced Futures Usage

As we have seen in Section 2.3, Future objects are an easy way to parallelize tasks
in your application. The futurist library has been built on top of concurrent.futures and
offers a few bonuses that I would like to introduce here. It is (almost) a transparent
replacement for concurrent.futures, so any code should be straightforward in terms of
adapting to this library, which is itself entirely based on concurrent.futures.

Example 2.13 Workers using futurist.ThreadPoolExecutor
1 import futurist
2 from futurist import waiters
3 import random
4

5

6 def compute():
7 return sum(
8 [random.randint(1, 100) for i in range(10000)])
9

10
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11 with futurist.ThreadPoolExecutor(max_workers=8) as executor:
12 futures = [executor.submit(compute) for _ in range(8)]
13 print(executor.statistics)
14

15 results = waiters.wait_for_all(futures)
16 print(executor.statistics)
17

18 print(”Results: %s” % [r.result() for r in results.done])
Example 2.14 Output of futures-threads-worker

1 $ python examples/futurist-threads-worker.py
2 <ExecutorStatistics object at 0x10b95b820 (failures=0, executed=0, ←֓runtime=0.00, cancelled=0)>
3 <ExecutorStatistics object at 0x10b95b820 (failures=0, executed=8, ←֓runtime=143.76, cancelled=0)>
4 Results: [50458683, 50479504, 50517520, 50510116, 50450298, 50510857, ←֓50530137, 50511422]

First, futurist allows any application to access statistics about the executor it uses.
That view is valuable for tracking the current status of your tasks and to report infor-
mation on how the code runs.

futurist also allows passing a function and possibly denying any new job to be sub-
mitted by using the check_and_reject argument. This argument allows controlling
the maximum size of the queue in order to avoid any memory overflow.

Example 2.15 Using check_and_reject to limit queue size

1 import futurist
2 from futurist import rejection
3 import random
4

5

6 def compute():
7 return sum(
8 [random.randint(1, 100) for i in range(1000000)])
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9

10

11 with futurist.ThreadPoolExecutor(
12 max_workers=8,
13 check_and_reject=rejection.reject_when_reached(2)) as executor:
14 futures = [executor.submit(compute) for _ in range(20)]
15 print(executor.statistics)
16

17 results = [f.result() for f in futures]
18 print(executor.statistics)
19

20 print(”Results: %s” % results)
Depending on the speed of your computer, it is likely that Example 2.15 raises

a futurist.RejectedSubmission exception because the executor is not fast enough
to absorb the backlog, the size of which is limited to two. This example does not
catch the exception – obviously, any decent program should handle that exception
and either retry later, or raise a different exception to the caller.

futurist addresses a widespread use case with the futurist.periodics.PeriodicWorker class. It allows scheduling functions to run regularly, based on the system
clock.

Example 2.16 Using futurist.periodics
1 import time
2

3 from futurist import periodics
4

5

6 @periodics.periodic(1)
7 def every_one(started_at):
8 print(”1: %s” % (time.time() - started_at))
9

10

11 w = periodics.PeriodicWorker([
12 (every_one, (time.time(),), {}),

37 / 298



2.4. ADVANCED FUTURES USAGE

13 ])
14

15

16 @periodics.periodic(4)
17 def print_stats():
18 print(”stats: %s” % list(w.iter_watchers()))
19

20

21 w.add(print_stats)
22 w.start()

Example 2.17 Output of futurist-periodics.py
1 $ python examples/futurist-periodics.py
2 1: 1.00364780426
3 1: 2.00827693939
4 1: 3.00964093208
5 stats: [<Watcher object at 0x1104fc790 (runs=3, successes=3, failures ←֓=0, elapsed=0.00, elapsed_waiting=0.00)>,
6 <Watcher object at 0x1104fc810 (runs=0, successes=0, failures ←֓=0, elapsed=0.00, elapsed_waiting=0.00)>]
7 1: 4.00993490219
8 1: 5.01245594025
9 1: 6.01481294632

10 1: 7.0150718689
11 stats: [<Watcher object at 0x1104fc790 (runs=7, successes=7, failures ←֓=0, elapsed=0.00, elapsed_waiting=0.00)>,
12 <Watcher object at 0x1104fc810 (runs=1, successes=1, failures ←֓=0, elapsed=0.00, elapsed_waiting=0.00)>]
13 1: 8.01587891579
14 1: 9.02099585533
15 [...]
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Example 2.16 implements two tasks. One runs every second and prints the time
elapsed since the start of the task. The second task runs every four seconds and prints
statistics about the running of those tasks. Again here, futurist offers internal access
to its statistics, which is very handy for reporting the status of the application.

While not necessary to depend on, futurist is a great improvement over concurrent.futures if you need fine grained control over the execution of your threads or
processes.

2.5 Daemon Processes

Being aware of the difference betweenmultithreading andmultiprocessing in Python,
it becomes more clear that using multiple processes to schedule different jobs is ef-
ficient. A widespread use case is to run long-running, background processes (often
called daemons) that are responsible for scheduling some tasks regularly or processing
jobs from a queue.

It could be possible to leverage concurrent.futures and a ProcessPoolExecutor to do that as discussed in Section 2.3. However, the pool does not provide any
control regarding how it dispatches jobs. The same goes for using the multiprocessingmodule. They both make it hard to efficiently control the running of background
tasks. Think of it as the ”pets vs. cattle” analogy for processes.

In this section, I would like to introduce you to Cotyledon, a Python library de-
signed to build long-running processes.

Example 2.18 Daemon using Cotyledon

1 import threading
2 import time
3

4 import cotyledon
5
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6

7 class PrinterService(cotyledon.Service):
8 name = ”printer”
9

10 def __init__(self, worker_id):
11 super(PrinterService, self).__init__(worker_id)
12 self._shutdown = threading.Event()
13

14 def run(self):
15 while not self._shutdown.is_set():
16 print(”Doing stuff”)
17 time.sleep(1)
18

19 def terminate(self):
20 self._shutdown.set()
21

22

23 # Create a manager
24 manager = cotyledon.ServiceManager()
25 # Add 2 PrinterService to run
26 manager.add(PrinterService, 2)
27 # Run all of that
28 manager.run()

Example 2.18 is a simple implementation of a daemon using Cotyledon. It creates
a class named PrinterService that implements the needed method for cotyledon.Service: run which contains the main loop, and terminate, which is called by an-
other thread when it terminates the service.

Cotyledon uses several threads internally (at least to handle signals), which is why
the threading.Event object is used to synchronize the run and terminate methods.

This service does not do much; it simply prints the message Doing stuff every
second. The service is started twice by passing two as the number of services to start
to manager.add. That means Cotyledon starts two processes, each of them launching
the PrinterService.run method.
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When launching this program, you can run the ps command on your system –
on Unix at least – to see what is running:

1 74476 ttys004 0:00.09 cotyledon-simple.py: master process [examples/ ←֓cotyledon-simple.py]
2 74478 ttys004 0:00.00 cotyledon-simple.py: printer worker(0)
3 74479 ttys004 0:00.00 cotyledon-simple.py: printer worker(1)

Cotyledon runs a master process that is responsible for handling all of its children.
It then starts the two instances of PrinterService as it was requested to launch. It
also gives them nice shiny process names, making them easier to track in the long
list of processes. If one of the processes gets killed or crashes, it is automatically
relaunched by Cotyledon. The library does a lot behind the scenes, e.g., doing the os.fork calls and setting up the right modes for daemons.

Cotyledon also supports all operating systems supported by Python itself, avoiding
the developer needing to have to think about operating system portability – which
can be quite complex.

Example 2.18 is a simple scenario for independent workers – they can execute
a job on their own, and they do not need to communicate with each other. This
scenario is rare, as most services need to exchange between one another.

Example 2.19 shows an implementation of the common producer/consumer
pattern. In this pattern, a service fills a queue (the producer) and other services (the
consumers) consume the jobs to execute them.

Example 2.19 Producer/consumer using Cotyledon

1 import multiprocessing
2 import time
3

4 import cotyledon
5

6
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7 class Manager(cotyledon.ServiceManager):
8 def __init__(self):
9 super(Manager, self).__init__()

10 queue = multiprocessing.Manager().Queue()
11 self.add(ProducerService, args=(queue,))
12 self.add(PrinterService, args=(queue,), workers=2)
13

14

15 class ProducerService(cotyledon.Service):
16 def __init__(self, worker_id, queue):
17 super(ProducerService, self).__init__(worker_id)
18 self.queue = queue
19

20 def run(self):
21 i = 0
22 while True:
23 self.queue.put(i)
24 i += 1
25 time.sleep(1)
26

27

28 class PrinterService(cotyledon.Service):
29 name = ”printer”
30

31 def __init__(self, worker_id, queue):
32 super(PrinterService, self).__init__(worker_id)
33 self.queue = queue
34

35 def run(self):
36 while True:
37 job = self.queue.get(block=True)
38 print(”I am Worker: %d PID: %d and I print %s”
39 % (self.worker_id, self.pid, job))
40

41

42 Manager().run()
42 / 298



2.5. DAEMON PROCESSES

The program in Example 2.19 implements a custom cotyledon.ServiceManager that is in charge for creating the queue object. This queue object is passed to all
the services. The ProducerService uses that queue and fills it with an incremented in-
teger every second, whereas the PrinterService instances consume from that queue
and print its content.

When run, the program outputs the following:

1 I am Worker: 0 PID: 24727 and I print 0
2 I am Worker: 0 PID: 24727 and I print 1
3 I am Worker: 1 PID: 24728 and I print 2
4 I am Worker: 0 PID: 24727 and I print 3

The multiprocessing.queues.Queue object eases the communication between
different processes. It is safe to use across threads and processes, as it leverages locks
internally to guarantee data safety.

Note
If you are familiar with the Go programming language, this is the
basic pattern that is used to implement the Go routines and their
channels. That common and efficient pattern made the Go lan-
guage very popular. In Go, forking new processes and passing
messages between them is provided as a built-in element of the
language. Providing syntactic sugar makes it quicker to write pro-
grams with this pattern. However, in the end, you can achieve the
same thing in Python, though, with maybe, a little more effort.

Last, but not least, Cotyledon also offers a fewmore features, such as reloading the
program configuration or changing the number of workers for a class dynamically.

Example 2.20 Reconfiguring the number of processes with Cotyledon
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1 import multiprocessing
2 import time
3

4 import cotyledon
5

6

7 class Manager(cotyledon.ServiceManager):
8 def __init__(self):
9 super(Manager, self).__init__()

10 queue = multiprocessing.Manager().Queue()
11 self.add(ProducerService, args=(queue,))
12 self.printer = self.add(PrinterService, args=(queue,), workers ←֓=2)
13 self.register_hooks(on_reload=self.reload)
14

15 def reload(self):
16 print(”Reloading”)
17 self.reconfigure(self.printer, 5)
18

19

20 class ProducerService(cotyledon.Service):
21 def __init__(self, worker_id, queue):
22 super(ProducerService, self).__init__(worker_id)
23 self.queue = queue
24

25 def run(self):
26 i = 0
27 while True:
28 self.queue.put(i)
29 i += 1
30 time.sleep(1)
31

32

33 class PrinterService(cotyledon.Service):
34 name = ”printer”
35
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36 def __init__(self, worker_id, queue):
37 super(PrinterService, self).__init__(worker_id)
38 self.queue = queue
39

40 def run(self):
41 while True:
42 job = self.queue.get(block=True)
43 print(”I am Worker: %d PID: %d and I print %s”
44 % (self.worker_id, self.pid, job))
45

46

47 Manager().run()
In Example 2.20, only two processes for PrinterService are started. As soon asSIGHUP is sent to the master process, Cotyledon calls the Manager.reload method that

reconfigure the printer service to now have five processes. This is easy to check:

1 $ ps ax | grep cotyledon
2 55530 s002 S+ 0:00.12 cotyledon-reconfigure.py: master process [ ←֓examples/cotyledon-reconfigure.py]
3 55531 s002 S+ 0:00.02 cotyledon-reconfigure.py: master process [ ←֓examples/cotyledon-reconfigure.py]
4 55532 s002 S+ 0:00.01 cotyledon-reconfigure.py: ProducerService ←֓worker(0)
5 55533 s002 S+ 0:00.01 cotyledon-reconfigure.py: printer worker(0)
6 55534 s002 S+ 0:00.01 cotyledon-reconfigure.py: printer worker(1)
7 $ kill -HUP 55530
8 $ ps ax | grep cotyledon
9 55530 s002 S+ 0:00.27 cotyledon-reconfigure.py: master process [ ←֓examples/cotyledon-reconfigure.py]

10 55531 s002 S+ 0:00.03 cotyledon-reconfigure.py: master process [ ←֓examples/cotyledon-reconfigure.py]
11 55551 s002 S+ 0:00.01 cotyledon-reconfigure.py: printer worker(2)
12 55553 s002 S+ 0:00.01 cotyledon-reconfigure.py: printer worker(3)
13 55554 s002 S+ 0:00.01 cotyledon-reconfigure.py: printer worker(4)
14 55555 s002 S+ 0:00.01 cotyledon-reconfigure.py: printer worker(1)
15 55557 s002 S+ 0:00.01 cotyledon-reconfigure.py: ProducerService ←֓
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16 55558 s002 S+ 0:00.01 cotyledon-reconfigure.py: printer worker(0)

Cotyledon is an excellent library for managing long-running processes. I encour-
age everyone to leverage it to build long-running, background, job workers.

2.6 Mehdi Abaakouk on CPU Scaling

“

HeyMehdi! Could you start by introducing yourself and ex-
plaining how you came to Python?

Hi! I am Mehdi Abaakouk, I live in Toulouse (France), and I have
been using Linux for almost twenty years.

My current job is Senior Software Engineer for Redhat. My main
interests in computer sciences are open-source software and how the
Internet works under the hood, and I like hacking both of them.

At the beginning of my using Linux, I was frustrated with the music
players available at that time, so I started to write one. I looked at the
code of many media players and wanted to use GTK/GStreamer
toolkits. I first tried it in C by reusing some code from Rhythmbox,
but I quickly abandoned that because of the slow progress I made
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Hey, this was only a sample chapter!

I hope that you did like the sample! It includes the complete table of contents

and a full chapter with its examples.

The full version of The Hacker’s Guide to Scaling Python includes:

• 13 chapters

• 7 interviews

• 300 pages

• 80 code snippets

• Practical examples

• Available in PDF, HTML, EPUB and MOBI formats

• Available in a professionally printed paperback format

• And a few more bonuses such as Docker images!

Buy the Book!

Now that you’ve read the sample,

you might be interested in buying the

whole book. It’s available online at

scaling-python.com in different formats

and packages. Go check it out!

http://scaling-python.com
http://scaling-python.com

